“龋齿的表面首先形成了一个仿生矿化前沿。”唐睿康说,这个仿生矿化前沿能完全的结合在需要修补的牙釉质界面上,同时能引导接下来晶体的外沿生长,让羟基磷灰石长出类似于釉柱结构的晶体,并朝特定的方向有序排列。
实验数据显示,48小时后,牙釉质“长”高了2-3微米。进一步的力学性能测试显示,长出来的人工牙釉质硬度和弹性模量与天然牙釉质的数值几乎相同。而外形上更是“以假乱真”,电镜图辨别不出人工修补痕迹,即使牙医也不能凭借经验分辨出修复前后的牙釉质。
单颗人牙的照片。左边黑色区域为未修复的牙,右侧黄绿色区域为用材料修复后的人牙(颜色是由荧光标记物产生,用于区分两个区域)。两张插入图是修复前后的牙釉质扫描电镜图,白色标尺为1微米。
研究团队认为,该研究有望将牙修复从“填补”时代带入到“仿生再生”阶段。
值得一提的是,唐睿康本人门牙上即有一处隐裂。他主动提议未来在自己身上做实验,开展仿生矿化牙釉质修复的验证。
不过,研究团队强调,如果要真正实现临床应用,该项技术还需经历严格的动物实验和临床验证。“虽然我们实现了天然牙釉质的结构性原位修复,但牙缺损形式繁多,下一步需要针对不同的情况进一步研发修复模型,确保可控与有效。”邵长鹆说。