在过去的几个月里,已经出现了几款光学 AI 芯片的原型机。总部位于波士顿的 Lightelligence 公司就开发了一种光学人工智能加速器,该加速器与当前的电子硬件兼容,通过优化一些繁重的神经网络计算,可以将人工智能模型的性能提高一到两个数量级。Lightelligence 的工程师表示,光学计算的进步也将降低人工智能芯片的制造成本。
最近,香港科技大学的研究人员开发了一种全光神经网络。为了确认这种新方法的能力和可行性,他们构建了一个概念验证模型,即一个具有 16 个输入和 2 个输出的完全连接的双层神经网络,然后使用全光学网络对 Ising 模型的有序和无序阶段进行分类。结果表明,全光学神经网络与训练有素的基于计算机的神经网络一样准确。
研究小组成员刘俊伟说:
我们的全光学方案可以使神经网络以光速执行光学并行计算,而消耗的能量却很少。大规模的全光学神经网络可以用于从图像识别到科学研究的各种应用。
我们的全光学方案可以使神经网络以光速执行光学并行计算,而消耗的能量却很少。大规模的全光学神经网络可以用于从图像识别到科学研究的各种应用。
雷锋网注:上图为 Cerebras 公司的大型芯片
有时,扩大规模确实是解决问题的好方法。今年 8 月,硅谷初创企业 Cerebras Systems 推出了一款包含 1.2 万亿晶体管的大型人工智能芯片,这也是有史以来最大的半导体芯片;除此之外,它在 42225 平方毫米的面积上拥有 40 万个内核,比 Nvidia 最大规模的图形处理器还要大 56.7 倍,后者的尺寸为 815 平方毫米。
这种大型芯片加快了数据处理速度,能够以更快的速度训练人工智能模型——据悉,Google、Facebook、OpenAI、腾讯,百度以及其他许多公司都认为,当今 AI 的基本局限性在于训练模型花费的时间太长。因此,减少 AI 训练时间可以消除了整个行业进步的主要瓶颈。与传统的 GPU 和 CPU 相比,这种超大型芯片的独特架构还减少了能耗。
Linley Group 首席分析师 Linley Gwennap 在一份声明中说:
Cerebras 的晶片级技术取得了巨大的飞跃,在单个硅片上实现了远远超出任何人想象的处理性能。为完成这一壮举,该公司甚至解决了一系列困扰工程行业数十年的恶性工程挑战。
Cerebras 的晶片级技术取得了巨大的飞跃,在单个硅片上实现了远远超出任何人想象的处理性能。为完成这一壮举,该公司甚至解决了一系列困扰工程行业数十年的恶性工程挑战。
Cerebras 最近还与美国能源部签订了一份合同,美国能源部将利用该芯片加速科学、工程和健康领域的深度学习研究。
不过,制造出超大规模的芯片并不意味着万事大吉。因为芯片的尺寸将会受到使用空间的限制;而且,芯片制造商通常也不会制造这么大规模的芯片,因为在制造过程中很有可能出现杂质,从而导致芯片故障。
由于目前各行各业都在为深度学习寻找应用场景,单一芯片架构主导市场的可能性很小。但可以肯定的是,未来的人工智能芯片很可能与过去数十年里的经典 CPU 不尽相同。